(101) 机械工程学院

学科、专业名称及研究方向	指导教师	备 注
0802 机械工程(一级学科学位授予权)	'	•
01、数控、精密、高效成形加工工艺技术与装备		
02、农副产品精深加工工艺技术与装备	孙宇	
03、复杂系统检测、控制、诊断与维护技术		
04、数控机床动力学与数字化设计技术	-t	
05、先进复合材料构件加工技术	袁军堂	
06、轻合金构件高速高效精密加工技术		
07、制造装备信息化与智能化技术 08、复杂机电系统的健康监测与诊断维护技术		
09、机电系统嵌入式控制技术	過去甘	
10、重大装备测控与制造技术		
11、机器人技术	冯虎田	
12、复杂机电系统可靠性工程		
13、智能化机电系统设计技术	马少杰	
14、探测制导与控制技术	コンボ	
15、先进制造技术	~ # H	
16、精密测控技术	王禹林	
17、机器人技术及可靠性 18、增材设计、制造及平台		
19、高端装备数字化设计与制造	刘婷婷	
20、军用暨特种车辆安全与防护		
21、智能车辆底盘控制理论与技术	王显会	
22、复杂制造装备的建模、分析与优化		
23、金属板料精密高效成形工艺技术与装备	武凯	
24、绿色、智能化生物质能致密成型技术与装备		
25、先进制造技术		
26、微纳驱动与控制	朱志伟	
27、智能微纳制造系统	7,100,11	
28、电磁悬浮与驱动系统 29、智能探测与控制技术		
30、现代引信安全保险控制系统	聂伟荣	
31、MEMS 惯性器件与系统	321070	
32、机械电子工程		
33、机器人	姚建勇	
34、人工智能		
35、机电系统智能探测与精准控制技术	- 	
36、机电系统信息交联与数据链技术	李豪杰	
37、机电系统安全控制技术 38、增材制造高性能金属材料		
39、先进制造过程仿真、监测与控制		
40、增材制造数字孪生及机器学习理论与应用	14/476	
41、车辆动力学与智能安全控制		
42、新能源智能网联汽车技术	皮大伟	
43、多物理场耦合的仿生软体机器人设计		
44、面向深空的爬行机器人可控黏脱附关键技术	张文玲	
45、仿生非常规力学特性的可编程拓扑结构		
46、精密机械设计与检测 47、制造装备可靠性技术	祖莉	
47、	(土土木) 	
49、智能材料结构驱动及其控制		
50、基于光敏材料的绿色微驱动与控制	王新杰	
51、微(光) 机电系统 M(0) EMS 设计及控制		

学科、专业名称及研究方向	指导教师	备 注
52、智能刀具设计与制造 53、加工状态识别与在线监控	殷增斌	
54、激光探测技术 55、三维成像技术	查冰婷	
56、复合探测技术 57、数字工程与复杂系统	童一 飞	
58、智能制造与物流供应链 59、智能装备运维 60、难加工材料高效绿色智能化加工技术	里一〇	
61、高性能刀具材料制备、结构设计及应用技术 62、机械结构动力学特性分析技术	汪振华	
63、智能材料与结构 64、振动及控制	王炅	
65、金属材料性能静液强化装备 66、轻合金材料静液强化关键技术 67、高压机械结构强度分析与仿真	吴志林	
68、机构学 69、机器人技术 70、数控机床功能部件	汪满新	
71、车辆动力学及控制 72、越野科学与技术	陈轶杰*	
73、3D 打印(增材制造)金属材料及应用技术 74、球形金属粉末制备技术与装置 75、新型 3D 打印机设计与制造 76、计算材料学	杜宇雷	
77、航天器轨道动力学与飞行控制 78、航天器减振与缓冲动力学 79、空间高效毁伤技术	岳帅	
80、机电液系统伺服控制 81、智能机器人 82、智能液压元件	邓文翔	
83、微能源与微纳传感器 84、弹载智能微系统 85、无人机感知与控制	戴可人	
86、智能车辆底盘控制理论与技术 87、新能源智能网联汽车技术	王洪亮	
88、智能探测与控制技术 89、智能微机电系统 90、先进微驱动与控制	曹云	
91、先进多功能结构极限轻量化设计 92、结构电路装备一体化智能设计 93、CAD/CAE/CAM	张长东	
94、三维结构电路一体化制造技术与装备 95、高性能聚合物复材增材制造技术 96、电功能结构增材制造技术	肖行志	
97、材料/结构强冲击力学响应 98、特种车辆强冲击防护 99、车辆轻量化设计	孙晓旺	
100、工业母机核心功能部件设计制造技术 101、智能装备测试技术 102、机电系统可靠性技术 103、机器人技术	欧地	
104、无人系统动力学建模与控制技术 105、火炮虚拟样机与伺服控制技术 106、机电/机电液作动系统控制与仿真技术	王修业	

学科、专业名称及研究方向	指导教师	备注
107、机电系统目标探测与控制技术 108、机电系统灵巧化与智能化设计技术 109、小型化制导器件设计与试验技术	张合	
110、增材制造用高性能金属材料设计与开发 111、增材制造金属材料强韧化机理 112、高性能金属粉末制备技术	朱志光	
113、设计认知理论 114、人因与系统交互方法研究 115、工业信息可视化设计研究	吴晓莉	培养单位: 设传学院
116、整合创新设计方法与实践研究 117、智媒融合设计方法与实践研究 118、文化创意与交互设计融合研究	唐艺	培养单位: 设传学院
119、社会创新设计 120、城乡融合服务设计	徐伟	培养单位: 设传学院
121、智能技术融合创意设计方法与实践研究 122、信息与交互设计方法与研究 123、工业设计虚拟仿真与增强现实研究与实践	姜斌	培养单位: 设传学院
124、智能产品与用户体验设计研究 125、区域文化与乡村创新设计研究 126、设计形态与感性因素量化研究	张轶	培养单位: 设传学院
127、人工智能(AIGC)艺术设计 128、文化创意与交互设计融合研究 129、工业信息可视化设计研究	白琼	培养单位: 设传学院
0804 仪器科学与技术(一级学科学位授予权)		
01、新型传感技术 02、智能测控技术与系统 03、惯性测量技术	卜雄洙	
04、MEMS 惯性技术 05、微纳米生物传感技术 06、微纳测量技术	苏岩	
07、MEMS 技术 08、惯性技术	裘安萍	
09、动态参量测试与计量技术 10、智能系统与计算机测控技术 11、现代传感与网络化测试技术	孔德仁	
12、复杂环境瞬态量测量及校准技术 13、声定位技术 14、生物医疗仪器 15、智能传感技术	狄长安	
16、微流控器件与系统 17、微型反应器	夏焕明	
18、MEMS 传感器测控技术 19、ASIC 芯片设计及制造技术 20、智能仪器测试及控制技术	周同	
21、MEMS 惯性传感器设计与控制技术 22、微纳谐振器结构动力学、非线性与混沌 23、微纳结构加工技术	姜波	
0825 航空宇航科学与技术(一级学科学位授予权)		
□ 01、微小卫星设计制造技术 □ 02、飞行器总体技术	廖文和	
03、新型推进动力装置设计理论与方法 04、火箭发动机内燃烧流动过程仿真研究 05、火箭发动机结构完整性分析方法	陈雄	
06、无人飞行器与自动驾驶系统 07、基于物理信息的机器学习 08、多相流动、传热与燃烧特性研究	吴威涛	
09、飞行器总体技术 10、飞行器毁伤与评估 11、先进飞行器结构增材制造	郭锐	

学科、专业名称及研究方向	指导教师	备 注
12、微纳卫星总体技术		
13、空间博弈技术	张翔	
14、卫星隐身技术		
15、空间在轨操控		
16、空间制造技术	郑侃	
17、先进航天器设计		
18、飞行器总体与发动机技术	ハケハ井 イ!	
19、固体火箭发动机结构完整性及寿命评估技术	许进升	
20、新型推进动力装置技术 21、特种飞行器设计		
21、行性 (1) 益以	贾鑫	
23、材料冲击动力学行为	火鎚	
24、航天器轨道动力学与飞行控制		
25、航天器制导与轨迹优化	陈丹鹤	
26、空间智能集群与操控	123413	
27、爆震燃烧及其推进技术		
28、固体火箭发动机技术	马虎	
29、航空发动机燃烧技术		
30、弹箭总体和固体火箭发动机技术		
31、动力装置内流动与燃烧过程及机理	卓长飞	
32、弹箭气动、弹道与控制技术		
33、飞行器总体技术	产业	
34、特种飞行器设计	庞兆君	
35、航天器动力学与控制 36、固体火箭发动机技术		
37、发动机内流固热耦合过程及机理	李映坤	
38、多物理场耦合计算方法及应用	于灰叶	
39、航空发动机总体性能建模仿真及调控方法		
40、轴流压气机和涡轮内部流动及设计方法	赵巍*	
0826 兵器科学与技术(一级学科学位授予权)		
01、特种机械新概念、新结构及新原理研究	周克栋	
02、特种机械系统仿真技术	风光你	
03、火炮总体及虚拟样机设计技术		
04、武器发射载荷传递规律及结构控制	杨国来	
05、等几何分析理论与方法		
06、发射系统流体力学研究		
07、发射系统结构动力学及优化	乐贵高	
08、新发射技术研究		
09、火箭导弹燃气射流及其动力效应实验技术	徐强	
10、火箭导弹发射安全性评价方法 11、机电系统集成设计		
11、机电系统集成设计 12、机电系统故障诊断与预测	侯保林	
13、弹头与战斗部技术		
14、高效毁伤与防护技术	张先锋	
15、高效毁伤和防护技术	-t \\	
16、冲击动力学	黄正祥	
17、弹药总体技术		
18、毁伤机理与终点效应	杜忠华	
19、智能弹药		
20、弹药高效毁伤技术		
21、毁伤机理与终点效应	李伟兵	
22、爆炸力学		
23、火炮总体设计与结构分析	F- 17. 74	
24、电液伺服传动与控制技术	陈龙淼	
25、武器应用力学		

学科、专业名称及研究方向	指导教师	备 注
26、弹药总体技术		
27、毁伤机理与终点效应	李文彬	
28、灵巧与智能弹药技术		
29、人体外骨骼机器人 30、机电一体化智能轻武器装备		
31、武器气体动力学	管小荣	
32、武器系统仿真与优化		
33、爆炸力学		
34、弹药终点效应	李向东	
35、战斗部效能评估	3 1 4/3	
36、目标易损性 37、爆炸与冲击动力学		
38、终点弹道效应		
39、防护工程	高光发	
40、材料/结构动态力学行为与设计		
41、弹药工程		
42、新概念、新结构与新原理研究	一 4,4月	
43、智能自动机技术 44、小型军用机器人技术	王永娟	
45、自动机设计理论与智能控制技术		
46、智能供弹及有序回收技术	戴劲松	
47、武器系统多能量范畴动态模型符号推导与仿真技术	7447714	
48、火箭武器总体技术		
49、发射系统结构及性能优化	李军	
50、火箭武器燃气射流动力学		
51、弹药总体技术		
52、毁伤机理与终点效应	姚文进	
53、灵巧与智能弹药技术		
54、武器系统 AI 控制技术研究 55、全电子安全系统技术研究	· · · · · · · · · · · · · · · · · · ·	
56、激光制导与控制技术研究	灰 件並	
57、火炮武器系统总体技术		
58、现代火炮自动化技术	徐亚栋	
59、智能火炮技术		
60、发射系统总体及控制技术	于存贵	
61、复合材料在兵器发射系统中的应用	1 作贝	
62、灵巧引信设计理论		
63、探测与控制	李长生	
64、信息化智能化引信技术		
65、战斗部新材料技术 66、高效毁伤与防护	王传婷	
67、活性毁伤元	工工人女女工	
68、现代火炮设计理论与方法		
69、后坐控制及轻量化技术	葛建立	
70、火炮信息化与智能化技术		
71、爆炸与冲击动力学		
72、轻质防护结构	李鑫	
73、多功能力学超材料		
74、极端服役环境下材料与结构响应		
75、装备防护技术	王桂吉*	
76、武器终点效应		
77、火炮电磁阻尼机理与载荷控制技术	王丽群	
78、复杂装备不确定性动力学与设计理论	—— IIII 14T	
79、高效毁伤与防护技术	Δπ I.n →	
80、新原理战斗部设计	祖旭东	
81、弹靶作用机理研究		

学科、专业名称及研究方向	指导教师	备 注
82、防护工程		
83、高效毁伤与防护技术	王振	
84、爆炸力学		
85、先进火力设计	 陈红彬	
86、无人智能协同打击技术	外红化	
87、智能毁伤与防护技术		
88、电磁毁伤与防护技术	潘绪超	
89、爆炸电磁学		
90、高效毁伤技术		
91、活性材料战斗部技术	何源	
92、弹药总体技术		
93、轻武器终点效应		
94、单兵防护技术	温垚珂	
95、仿生人体靶标		
96、火炮数字化与智能化技术	· ·	
97、载荷缓冲与响应控制技术	陈光宋	
98、虚实结合仿真与设计理论		
99、单兵防护技术	金永喜*	
100、弹靶作用机理	亚尔岩"	

(102) 环境与生物工程学院

学科、专业名称及研究方向	指导教师	备 注
0817 化学工程与技术(一级学科学位授予权)	·	
01、基因表达和能量代谢的分子生物学机理		
02、生物药物的发现及分子药理	张建法	
03、微生物发酵及代谢工程		
04、功能纳米材料的仿生制备、组装及其应用	<u>ж</u> п	
05、新型微纳生物传感器的构筑及其性能分析 06、生物催化、电化学催化机理研究	单丹	
07、天然产物及中药物质基础研究		
08、药理学	汪俊松	
09、生物炼制,生物质转化,生物能源		
10、发酵工程	金明杰	
11、代谢工程与合成生物学		
12、体外诊断、液体活检、穿戴式传感 13、量子生物精密测量与生物量子效应探测	邓盛元	
13、重了生物相番侧重与生物重了效应探测 14、"合成生物-机电-数字"交叉系统	/中盤儿	
15、天然免疫与代谢生物学	<i>∞</i> □	
16、细胞死亡与炎症分子机理研究	翁丹	
17、环境微生物组		
18、石质文物生物侵蚀	刘小波	
19、文物保护技术与材料 20、电化学生物传感器		
20、电化字生物传感器 21、生物电分析	张学记*	
22、微生物发酵及分离工程		
23、生物抗菌机理及应用	龙旭伟	
24、环境生物修复技术及应用	70/211	
25、生物炼制、生物催化与转化		
26、微生物发酵及代谢工程	许召贤	
27、合成生物学 28、生物医用高分子材料		
29、活体水平高分子化学	李伟硕	
30、非侵入式神经界面电极材料		
31、生物界面传感与仿生材料设计与制备	付繁繁	
32、多器官串联器官芯片设计与应用	,,,,,,	
0830 环境科学与工程(一级学科学位授予权)		
01、新型膜材料及膜过程的开发		
02、用于环境污染治理的多孔材料合成及功能设计 03、高浓度难降解有机废水治理技术	李健生	
03、高浓度难降胜有机废水行建投水 04、面向水污染防治的环境催化转化技术		
05、新型环境功能材料的制备及应用	江芳	
06、工业固废处置与资源化技术		
07、纳米环境功能材料		
08、核污染控制与辐射防护	杨毅	
09、大气污染物监测与控制技术 10、环境与能源新型高分子膜材料的开发与应用		
10、环境与形像新至高分子膜构构的开发与应用 11、VOC 处理技术	陈守文	
12、难降解废水的膜生物处理技术		
13、化工废水生物强化处理技术及工艺		
14、难降解污染物厌氧降解过程调控技术	沈锦优	
15、难降解污染物降解功能菌剂开发与利用		
16、用于水处理的功能高分子材料 17、新型高分子膜材料的开发与应用	张强	
± 1 1 1 1 1 1 1 1 1		

学科、专业名称及研究方向	指导教师	备 注
18、污染防治的电化学催化技术 19、高浓度难降解有机废水处理技术 20、工业废水减污降碳/资源回收技术	韩卫清	
21、有机污染物的痕量检测技术及应用 22、持久性有机污染物的环境归趋及健康效应	苏冠勇	
23、环境功能材料设计及应用 24、难降解有机污染物治理 25、高盐废水脱盐和资源化	陈欢	
26、纳米环境功能材料 27、环境纳米材料的制备与应用	邵大冬	
28、污废水生物脱氮除磷新技术及新工艺 29、废水/有机生物质资源化及能源回收	葛士建	
30、环境功能界面材料设计及应用 31、废水生物强化处理技术及工艺	江心白	
32、污废水的毒性削减工艺开发 33、氧化副产物的毒性机制及控制方法	马德华	
34、新污染物的环境地球化学行为与多介质赋存规律 35、新污染物的生物地球化学过程与生态毒理效应	李建华	
36、环境功能界面材料设计及应用 37、废水生物强化处理技术及工艺	陈丹	
38、放射性核素的环境过程和生态风险 39、污染物的环境行为、转化及致毒机制 40、放射性核素的精准识别与选择性回收 41、闪烁体的研发及器件应用	毛亮	
42、污水生物脱氮除磷过程的低碳化增效与调控 43、废水碳源的原位挖掘与高值资源转化	邱爽	
44、环境功能材料设计制备及应用 45、气态污染物的环境催化净化技术 46、大气污染化学与控制技术	荣少鹏	

(103) 化学与化工学院

学科、专业名称及研究方向	指导教师	备 注
 0703 化学(一级学科学位授予权)	•	
01、能源材料化学(固态电池、水系电池)		
02、含能化合物的合成与应用研究	于琼	
03、生物染料与生物荧光探针/药物化学/化学生物学	房建国	
04、水污染控制方法与机制研究		
05、光/光电催化小分子转化技术研究	王文超	
06、功能材料开发和瞬态光谱动力学研究		
07、框架材料电化学(光电催化转化、能源转化、电致变色)	苏剑	
08、含能材料计算化学与人工智能	刘英哲*	
09、含能材料合成化学与工程应用研究	刘宁*	
0801 力学(一级学科学位授予权)		
01、非均相爆轰/燃烧机理研究		
02、高能量密度材料配方设计及工程应用研究	王伯良	
03、爆炸效应测试与评估方法研究		
04、含能材料危险性分级与控制技术 05、钝感弹药低易损特性评估及控制技术	徐森	
06、推选弹约低勿须特性评估及程制技术 06、推进剂安全性控制技术及作用机理研究	1示 稀	
0805 材料科学与工程(一级学科学位授予权)		
01、高性能纳米含能材料制备及应用		
02、复杂异质含能材料增材制造	姜炜	
03、纳米功能复合材料设计与制备		
04、碳基多层及复合薄膜材料		
05、金属-聚合物薄膜材料	江晓红	
06、材料表面的等离子体改性处理		
07、纳米材料的微结构可控合成	韩巧凤	
08、光催化及过硫酸盐活化技术用于污水处理		
09、功能弹性体的制备、性能及应用 10、智能材料的结构设计及组装	西佐丘	
11、多维度杂化无机/有机纳米复合材料的功能化设计及组装	贾红兵	
12、阳极氧化膜功能材料		
13、纳米光电功能材料	宋晔	
14、发射药及相关功能材料的设计、制备、性能、模拟计算与装药应用研究		
15、高分子纳米复合材料的结构、表界面及相关作用研究	肖正刚	
16、材料与化工工艺过程模拟仿真研究		
17、功能材料的制备及应用		
18、电化学的阳极氧化生长机理研究	朱绪飞	
19、导电高分子制备及应用		
20、低维纳米碳材料功能化设计及其应用研究	付永胜	
21、高性能储能器件关键材料的构筑及其性能研究 22、清洁能源催化材料设计		
23、肩后起源性化材料及11 23、原子尺度功能材料结构调控	陈胜	
24、固体推进剂		
25、含能材料超细化技术及应用	郭效德	
26、含能材料先进制造技术		
27、含能材料装药设计	堵平	
28、含能高分子材料	/FI	
29、电磁响应纳米材料的加工与合成及其细胞行为诱导研究	\ा र ू मे	
30、高灵敏压电感应芯片和纳米发电机的设计与制造	冯章启	

学科、专业名称及研究方向	指导教师	备 注
32、微纳米含能复合材料的设计、可控构筑、作用机制研究 33、高性能储热材料设计与储热技术研究	谈玲华	
34、材料科学与工程 35、含能材料资源化利用	魏晓安	
36、储氢材料利用 37、特种微纳米材料制备与应用技术 38、固体推进剂材料设计与性能调控	 刘杰	
39、先进制造工艺技术及工程化转化 40、有机功能材料及光伏器件	7.47///	
41、发射药工艺技术 42、发射药功能组分	周杰	
43、高能密度材料的理论设计 44、极端条件下功能材料的结构和性能 45、纳米功能材料的理论设计	朱卫华	
46、含能材料催化与降感特性 47、含能微单元制备与性能表征 48、微纳米复合含能材料构筑与释能特性	郝嘎子	
49、发射药及装药设计 50、含能高分子复合材料	刘志涛	
51、含能材料绿色制备 52、发射药及装药设计 53、发射药工艺仿真 54、化工行业数字化工程	南风强	
54、化工行业数字化工程 55、无机功能纳米材料微结构设计及应用研究 56、电化学能源储存用	孙敬文	
57、太阳能转换与应用 58、光电材料与器件 59、钙钛矿光伏技术	程远航	
60、原位光谱表征技术 61、发射药与装药技术,含能材料性能模拟与仿真 62、树脂基复合材料、纤维复合材料设计及应用	徐滨	
63、发射药及装药技术 64、可燃复合材料设计、制备及应用		
65、基于能源存储与转化的纳米材料结构设计、器件及性能 66、多种二维纳米材料的微结构控制、性质及其应用研究 67、无机功能材料制备及性质	朱俊武	
68、功能高分子材料 69、智能自修复材料 70、高性能防腐涂层材料	傅佳骏	
71、新型光伏材料与器件 72、钙钛矿太阳能电池 73、钙钛矿发光器件 74、量子点发光器件 75、柔性电子材料与器件 76、光电器件界面工程	徐勃	
77、材料微结构与表界面表征 78、含能材料结构调控与性能 79、武器用特种材料使役行为与演化	刘渝*	
0817 化学工程与技术(一级学科学位授予权)	· 	
01、催化反应及其应用研究 02、绿色合成方法	钟秦	
03、氟化学 04、高分子固载催化剂的设计、制备与应用	蔡春	
05、石油和煤制芳烃、氮氧化物、碳氮催化材料反应化学 06、精细有机功能材料原子经济合成	彭新华	

学科、专业名称及研究方向	指导教师	备 注
07、微生物工程		
08、化学生物学	孙东平	
09、低碳前沿技术		
10、有机中间体的合成及应用	nl. + +	
11、含能材料的制备及应用 12、表面活性剂的合成及应用	叶志文	
13、有机合成化学		
14、药物及中间体绿色合成及工艺研究	罗军	
15、共价有机框架材料设计、合成及应用		
16、绿色合成化学		
┃ 17、氟化学 ┃ 18、药物合成	易文斌	
19、有机反应研究		
■ 19、有机反应研允 ■ 20、医药、染料及其中间体的绿色合成及工艺研究	程广斌	
21、新型含能材料的合成及工艺研究	1主) /山	
22、催化剂设计,合成及性能研究		
23、环境友好的有机合成反应	李峰	
24、生物质转化与利用	→ 一手	
25、储氢与新能源材料		
26、多氮及全氮含能化合物的设计合成及应用	 胡炳成	
27、有机光致变色及共价有机框架等有机功能分子创制 28、精细化学品绿色合成技术	明州从	
29、有机绿色合成及工艺研究		
30、含能材料的制备及应用	李斌栋	
31、生物质谱分析		
32、膜蛋白的结构与功能	周敏	
33、大分子质谱技术		
34、功能材料的制备工艺及应用		
35、电化学能量存储和转化器件	雷武	
36、水处理及土壤修复相关技术 37、催化材料制备表征及应用		
38、小分子反应物气固相催化转化及机理研究	马卫华	
39、超临界 CO2 制备微孔聚合物	, ,	
40、绿色有机合成反应研究		
41、含能材料的设计与合成	杨红伟	
42、抗癌药物的合成研究		
43、有机合成化学	石基	
44、含能材料化学 45、药物合成化学	何英	
46、有机-无机杂化的多功能环境材料		
47、有机插层、表面吸附改性矿物材料	夏明珠	
48、水污染防治与土壤修复技术		
49、固体推进剂工艺及 3D 打印技术		
50、新型含能材料合成技术	蔺向阳	
□ 51、微孔含能材料技术及其应用 □ 52、有机合成化学		
■ 52、有机合成化学 ■ 53、有机发光显示材料与器件	V 1=	
54、药物合成及工艺	姜超	
55、生物质转化		
56、先进催化材料		
57、过程强化与优化	张舒乐	
58、数字化建模与全流程设计研究)	
59、含能材料合成化学与先进技术	汤永兴	
60、新能源领域(燃料电池、固态锂电池、超级电容器)	张根	
61、多氮、全氮含能材料的合成	→ Ⅲ前 季□	
62、具有特定结构或性能的催化材料的合成 63、新型储能材料、电解液的合成	王鹏程	
05、利至帕比的科、电解仪的自成	I	L

学科、专业名称及研究方向	指导教师	备 注
64、多氮及全氮含能材料的合成与应用		
65、药物中间体的分子设计与合成	章冲	
66、绿色有机合成		
67、绿色有机合成反应与催化技术 68、含能材料的合成、配方设计及应用	钱华	
69、化学反应安全风险评估	找 护	
70、新型含能化合物的设计及制备		
71、高性能锂电储能材料的制备及应用	孙呈郭	
72、药物分子的合成及活性研究		
73、光/电/热催化 74、氢能	、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
75、工业减污降碳	700月尹	
76、无机功能配合物-双稳态磁存储材料	暴欣	
77、有机小分子光致变色材料	茶 //	
78、火工烟火技术	* +4 *	
79、可燃剂性能调控及能量释放规律研究	李艳春	
80、复合含能材料制备及工艺研究。 81、二氧化碳以及其他 C1 分子催化转化		
82、甲烷及低烷烃的 C-H 活化和选择性转化	刘贵高	
83、光/电/热催化水分解与氨合成		
84、二维限域膜的设计及精细调控		
85、新型能源材料及器件开发(液流电池、燃料电池等)	熊攀	
86、离子输运与能量转换系统(浓差发电、离子筛分等) 87、绿色化学导向的合成有机化学		
88、有机硼试剂的设计合成与不对称催化转化	赵健	
89、高分子合成化学	72 K	
90、有机合成方法学		
91、自由基反应	王定海	
92、催化合成		
93、生物分析与传感 94、细胞成像及调控	 任克维	
95、药物智能载运与精准治疗	11.九维	
96、有机合成	₽±4	
97、含能材料制备与应用		
98、功能高分子与表面活性剂的创制及应用		
99、含能材料的界面调控	贾旭	
100、含能材料的测试理论与技术 101、含能材料的设计合成与性能研究		
102、新型含能材料的应用基础研究	林秋汉	
103、精细有机合成与制备工艺研究	11000	
104、有机金属化学:碳硼烷化学,自由基化学,主族元素化学		
105、配位化学:配位聚合物 超分子化学 106、含能材料化学:推进剂的设计、合成与应用	崔朋飞	
100、音配材料化学: 推进剂的设计、音成与应用 107、二维材料设计		
108、能源光催化技术	狄俊	
109、二氧化碳资源化利用		
110、绿色合成化学	#1 F	
111、非均相催化	陆国平	
112、生物转化和塑料降解 113、荧光分子探针及其传感系统		
113、灰九万子珠针及共传总系统 114、化学品环境风险防控及应急响应	王风贺	
115、化工行业退役场地土壤及地下水污染控制与绿色修复		
116、高能量密度材料分子设计、合成与性能调控		
117、固体推进剂用关键材料开发	许元刚	
118、新概念含能材料 110	기 시 선수	
119、含能复合材料制备及释能特性 120、高能量密度金属电池界面调控		
[140 x 円比里面又並/街电/心介 - - - - - - -	大1水	

学科、专业名称及研究方向	指导教师	备 注
121、催化剂设计及其多场耦合催化加氢		
122、锌离子电池开发和电催化还原	丁杰	
123、单元操作设计与开发		
124、材料表界面调控及表面防护应用	 郝青丽	
125、功能材料设计及电化学能源存储与转换器件 126、表界面调控及理论计算与模拟	/ /// 月 ///	
127、水系离子电池负极电解液界面	张文耀	
128、生物功能材料		
129、生物医用水凝胶	陈春涛	
130、高能材料设计与合成研究		
131、有机绿色合成反应研究	张文全*	
0826 兵器科学与技术(一级学科学位授予权)		
01、烟火燃烧机理与应用		
02、烟火光电对抗与无源干扰	朱晨光	
03、气溶胶灭火剂形成、扩散及应用		
04、新质含能材料		
05、爆炸箔点火与起爆微系统	- 朱朋	
06、微流体控制与微化学反应系统		
07、微纳米含能材料高效构筑及可控释能		
08、含能材料特种效应及空天应用	张文超	
09、含能材料安全点火技术研究		
10、含能材料电化学合成与应用研究 11、半导体桥火工品技术研究		
11、十分体价人工而仅不明九	周彬	
13、激光火工品技术		
14、激光微推进技术	吴立志	
15、微火工品 3D 直写技术	人立心	
16、复合含能材料组装及其构效关系研究		
17、含能材料打印技术	张琳	
18、含能材料结晶机理和结晶控制技术研究		
19、先进火工品技术		
20、新型空间推进技术	张伟	
21、含能材料激光化学物理		
22、MEMS 火工品技术		
23、微推进技术	许建兵	
24、微纳结构含能器件技术		
25、新概念火工品技术	任炜*	
26、先进火工品及器件集成技术	1774.	

(104) 电子工程与光电技术学院

	学科、专业名称及研究方向	指导教师	备 注
0803 光学コ			
01、光电探测	与图像处理	陈钱	
02、光电信号	处理与数字视频技术		
03、光电成像		柏连发	
04、多光谱图		顾国华	
05、光学计量		陈磊	
	仪器与测量技术 ***	4.口穴	
07、光学遥感 08、高能激光		朱日宏	
09、光电系统			
10、 眼视光学		高志山	
11、光电成像			
	材料器件和系统及相关测试技术	刘磊	
	与相关测试技术	钱芸生	
14、光电探测		隋修宝	
	探测与信号处理	钱惟贤	
16、激光技术			│ │培养单位 :
10、		李力	培 介 単 位 :
	ラルドマ心 仪器与测量技术		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19、光学遥感	* · · · · · · · · · · · · · · · · · · ·	李建欣	
	仪器与测量技术	7.14	
21、高能激光	技术与应用	马骏	
22、光电成像	与光电探测	何伟基	
23、光电探测	与信号处理	张毅	
24、光电成像		TK 3X	
25、计算光学			
	光学成像与传感	左超	
	与光信息处理技术	_, _	
28、生物医学	元子並俶成隊 测试技术与仪器		
30、激光技术		沈华	
	材料设计与制备		
	卜成像器件与系统及相关测试技术	张益军	
	成像与信息处理	고드	
34、单像素成		张闻文	
35、光电探测		任侃	
	图像信息融合与处理	177 // //	
	设计理论与方法	袁群	
	测试理论与仪器技术	21X.H.I	
39、计算成像 40、光电传感	· · · - · - · · ·	韩静	
41、 计算光学			
42、 高能激光			
	13.7ペート	郑万国*	
44、光学仪器		П + 1. г.	
45、光学加工		吴泉英*	
46、光电探测		李宁	
47、红外技术		4-1	
48、精密光学	仪器与测量仪器	韩志刚	
49、三维成像		胡岩	
50、光电探测	与成像		

学科、专业名称及研究方向	指导教师	备 注
51、多模态光学超分辨成像技术 52、生物光子学显微成像技术	刘永焘	
0809 电子科学与技术(一级学科学位授予权)		
01、微波毫米波电路与器件	吴文	
02、智能射频前端与天线 03、射频电路及系统设计		
04、高性能天线研究及设计	王建朋	
05、微波、毫米波吸收电路设计 06、微波毫米波天线与阵列		
06、	郭璐	
08、硅基 CMOS 毫米波集成电路芯片设计		
09、氮化镓毫米波集成电路芯片设计 10、天线阵列与射频芯片的集成电路系统设计	黄同德	
11、模拟集成电路芯片设计		
12、微波毫米波高性能天线 13、新体制相控阵及目标探测	张金栋	
14、微波毫米波器件建模和设计	2 4 5	
15、微波毫米波天线与系统	宗志园	
16、电磁隐身技术 17、电子侦察与多源信息融合技术	陶诗飞	
18、微波毫米波探测系统理论与技术		
19、通信电子战理论与技术	介巴巴	
20、微波毫米波太赫兹平面天线理论和设计 21、射频微波与毫米波集成芯片的 EDA 和设计	郭永新*	
22、微波和毫米波雷达技术在生物医疗和智慧交通中的应用	3 6/16/3/1	
0810 信息与通信工程(一级学科学位授予权)		
01、海洋声学与探测技术	杨益新	
02、雷达系统理论与技术 03、雷达信号理论	朱晓华	
04、噪声雷达理论与实现		
05、新体制雷达系统	顾红	
06、阵列天线与阵列信号处理 07、雷达目标特性建模与识别技术	韩玉兵	
08、微波毫米波系统建模与设计	和小小	
09、下一代无线通信技术	李骏	
10、移动互联网和移动大数据 11、声探测系统理论与技术		
12、生物医疗声信号处理	许志勇	
13、自适应阵列信号处理 14、毫米波主被动探测及成像技术		
15、近程目标探测技术	月年光	
16、电子对抗	张淑宁	
17、非平稳信号处理 18、目标分类与智能识别	37474	
19、智能网联与车联网		
20、基于人工智能的交通信息感知与融合 21、智能交通大数据建模与控制优化	张伟斌	
22、探测制导与控制技术		
23、近程雷达总体及应用技术	庄志洪	
24、智能通信理论与技术 25、组合设计理论与编码理论	张一晋	
26、新型生物医学传感	洪弘	
27、雷达信号处理 28、微波毫米波天线与无源器件技术		
29、人工智能电磁超表面理论与技术	褚慧	
30、移动通信网络技术	时龙	
31、区块链与分布式人工智能技术 32、无线移动通信与网络		
33、深空通信理论与卫星通信技术		

学科、专业名称及研究方向	指导教师	备 注
34、无线电近程探测系统及对抗技术 35、合成孔径雷达成像及对抗技术	陈思	
36、阵列信号处理技术 37、雷达信号处理技术	张仁李	
38、宽带阵列信号处理技术 39、雷达信号处理技术	张书瑞	
40、无线通信与智能组网技术 41、星地物联网技术 42、深空测控通信一体化技术	邹骏	
43、目标电磁探测与智能感知 44、阵列天线与阵列信号处理	盛卫星	

(106) 计算机科学与工程学院

学科、专业名称及研究方向	指导教师	备 注
0812 计算机科学与技术(一级学科学位授予权)		
01、图像处理与模式识别		
02、深度学习理论与技术	曹国	
03、计算机视觉		
04、图像处理和计算机视觉	7 + 78	
05、人工智能和机器学习	陈强	
06、机器学习理论与算法		
07、模式识别技术与应用	宮辰	
08、图像处理与计算机视觉		
09、数据挖掘与知识发现		
10、智能调度优化	幸祉	
11、离散事件系统与 Petri 网技术 12、强化学习与深度学习方法	黄波	
13、机器学习理论与方法		
14、自然语言处理		
15、数据挖掘技术与应用	贾修一	
16、计算机视觉与图像处理		
17、图像视频处理与分析		
18、多模态大模型		
19、目标检测与分割	李泽超	
20、视觉异常检测		
21、图像视频生成		
22、多模态学习与大模型		
23、机器人自主导航 24、图像分析与计算机视觉	陆建峰	
25、人工智能安全		
26、生成式人工智能		
27、计算机视觉与图像处理) T A 1	
28、模式识别与机器学习	潘金山	
29、深度学习理论及应用		
30、视频数据处理		
31、机器视觉及其工业应用	任明武	
32、嵌入式系统与智能图像传感器		
33、计算机视觉		
34、多模态大模型 35、具身智能	舒祥波	
36、人工智能安全		
37、多媒体分析与检索	庄 人 烬 "	
38、图像理解和计算机视觉	唐金辉*	
39、海量数据分析		
40、知识工程与智能系统	王永利	
41、认知语用技术		
42、遥感图像处理及应用 43、高性能并行计算技术	 吴泽彬	
44、云计算及其应用技术	大任你	
45、计算机视觉与模式识别		
46、多模态大模型与智能遥感	肖亮	
47、智能图形与生成式人工智能	H'n	
48、大小模型协同与边缘推理		
49、模式识别与机器学习 50、计算机视觉与图像处理		
51、生物特征识别	杨健	
52、深度学习与类脑计算		

学科、专业名称及研究方向	指导教师	备 注
53、多模态大模型 54、安全风险辨识 55、装备数字化	杨余旺	
56、模式识别与机器学习 57、生物信息学 58、生物医学图像处理	於东军	
59、卫星网络通信协议与系统 60、深度学习理论与应用 61、复杂网络理论与应用 62、网络安全事件分析	张琨	
63、智能机器人系统与设计 64、图像处理与计算机视觉 65、模式识别与深度等习技术	张浩峰	
66、计算机视觉与模式识别 67、深度学习 68、自动驾驶环境感知技术 69、智能机器人	张姗姗	
70、医学图像处理与分析 71、人工智能和机器学习 72、计算机器学习共享,1000000000000000000000000000000000000	纪则轩	
73、计算机视觉与模式识别 74、创新生成式人工智能 75、AI for Science 76、模式识别与计算机视觉	李俊	
77、以人为中心的具身智能	钱建军	
78、高性能与分布式计算 79、物联网与信息物理系统	孙晋	
80、移动通信与边缘计算 81、多智能体博弈与优化 82、强化学习	王喆	
83、计算机视觉与模式识别 84、人工智能和机器学习 85、嵌入式/边缘端智能计算 86、多媒体理解与分析	姚亚洲	
87、医学图像处理与分析 88、模式识别与机器学习 89、计算机视觉	周涛	
90、机器学习与大数据挖掘 91、模式识别与计算机视觉 92、人工智能与医学会及理	罗雷	
93、口音识别与语音合成 94、言语障碍信息智能处理 95、多模态语言信息处理	陈莹	
96、机器学习理论与方法 97、数据挖掘技术与应用 98、深度学习理论与技术 99、模式识别理论与应用	杨杨	
100、遥感图像处理及应用 101、智能计算与机器学习 102、多模态数据处理	徐洋	
103、分布式计算与系统 104、边缘智能与联邦学习 105、云计算与服务计算 106、嵌入式系统与软件	周俊龙	
107、生成式人工智能 108、计算机视觉与图像处理 109、模式识别与机器学习 110、深度学习理论及应用	董姜鑫	

111、计算机视觉与机器学习 112、模式识别理论与方法 113、图像内容理解与分析 114、多模态深度学习 115、计算机视觉与机器学习 116、深度学习理论与应用 117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 123、认知神经科学 124、图像与视频处理 125、多媒体内容分析与理解 谢国森 谢国森 刘甫山*	
113、图像内容理解与分析 114、多模态深度学习 115、计算机视觉与机器学习 116、深度学习理论与应用 117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 123、认知神经科学 124、图像与视频处理	
113、图像内容理解与分析 114、多模态深度学习 115、计算机视觉与机器学习 116、深度学习理论与应用 117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 123、认知神经科学 124、图像与视频处理	
115、计算机视觉与机器学习 116、深度学习理论与应用 117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 123、认知神经科学 124、图像与视频处理	
116、深度学习理论与应用 刘青山* 117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 刘永 120、机器人视觉理解及 SLAM 技术 21、生物医学信息分析 121、生物医学信息分析 22、脑科学与类脑智能 123、认知神经科学 24、图像与视频处理	
117、模式识别理论与应用 118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 123、认知神经科学 124、图像与视频处理	
118、具身智能机器人交互及决策学习 119、协作机器人技能学习及自主操作 刘永 120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 吴烨 122、脑科学与类脑智能 吴烨 123、认知神经科学 124、图像与视频处理	
120、机器人视觉理解及 SLAM 技术 121、生物医学信息分析 122、脑科学与类脑智能 吴烨 123、认知神经科学 124、图像与视频处理	•••••
121、生物医学信息分析 22、脑科学与类脑智能 吴烨 123、认知神经科学 124、图像与视频处理	
122、脑科学与类脑智能 吴烨 123、认知神经科学	
123、认知神经科学 124、图像与视频处理	
124、图像与视频处理	
, , , , , , , , , , , , , , , , , , ,	
■ ±00 × 20 // // / / / / / / / / / / / / / / /	
126、计算机视觉	
127、计算机视觉	
128、深度学习 许春燕 许春燕	
129、模式识别	
130、飲入八系统与边缘17异	
132、云边协同与大模型轻量化	
133、多媒体分析与检索	••••••
134、模式识别与机器学习 沈肖波 沈肖波	
135、图像处理与计算机视觉	
136、计算机视觉与模式识别	
137、三维视觉与场景智能	
139、新型神经网络建模与优化	
140、类脑学习与计算智能理论 刘嘉	
141、遥感信息智能处理	
142、计算机视觉	
143、遥感图像智能解译 刘芳	
144、多模态数据处理	
145、以人为中心的多模态感知与生成 146、模式识别与计算机视觉	
147、具身智能	
148、自然语言处理	
■ 149、大语言模型	
150、多模态大模型 151、计算机视觉	
152、多模态大模型 齐国君*	
153、具身智能	
154、多媒体理解与检索	
155、图像与视频理解与分析 金露	
156、多模态大模型	
157、计算机视觉与模式识别 王涛	
159、深度学习	
0835 软件工程(一级学科学位授予权)	
01、可信软件与智能系统	
02、人工智能安全与攻防 李千目	
03、新型工业化安全	
04、初一代软件工程 05、AI4SE 与软件智能化	
06 程序分析与测试	
07、软件(移动应用、智能合约等)缺陷检测 木魏	
08、服务计算与 LLM 智能体工作流 -19-	

学科、专业名称及研究方向	指导教师	备 注
09、智能软件分析		
10、智能运维	徐建	
11、知识图谱		
12、智能系统与软件安全		
13、工业互联网及其安全	付安民	
14、大数据安全与隐私保护		
15、内生智能的天地一体化网络		
16、人工智能	唐飞龙	
17、跨时空边云融合计算		
18、知识图谱与垂域大模型		

(107) 经济管理学院

	ュナナル	
学科、专业名称及研究方向	指导教师	备 注
1201 管理科学与工程(一级学科学位授予权)		
01、质量管理与质量工程 02、工业工程与管理	马义中	工程或数学类硕士优先
03、评价与决策分析		
04、故障诊断与健康管理 05、物流与供应链管理		
06、生产与服务运作管理	王秀利	
07、物流与供应链管理 08、制造与服务系统运营分析与优化	杨文胜	
09、物流与供应链管理 10、质量管理与质量技术	宋华明	
11、区域与城市高质量发展		欢迎具有数学和地理信息系统
12、产业与数字经济管理 13、信息组织与信息检索		(GIS)基础的考生报考
14、自然语言处理与文本挖掘 15、资本市场与审计	章成志	
16、公司治理与内部控制	韩晓梅	
17、电子商务管理决策建模 18、信息分析与数据挖掘	李莉	
19、质量管理与质量工程 20、工业工程与系统工程	汪建均	数学、工科(计算机、机械)类 考生优先
21、评价与决策技术	江文奇	75 工
22、服务运营管理决策 23、物流系统优化	刘明	数理和计算机基础较好者优先
24、应急智能决策 25、金融工程	王玉东	
26、能源金融		
28、社会化媒体、管理信息系统 29、数字经济与区域发展	赵宇翔	
30、智能决策与复杂系统控制优化	张骏	
31、审计治理 32、公司治理	刘笑霞	
33、信息检索与文本挖掘 34、自然语言处理	沈思	工科硕士和计算机相关背景优 先
35、产业经济与区域发展	徐晓亮	
36、财税改革与资源环境政策 37、智能系统、高价复杂网络、信息融合		
38、数据挖掘与商务智能、用户行为 39、交通运输管理		 欢迎具有较好数学和计算机编
40、物流与供应链优化与管理 41、大数据分析与挖掘、颠覆性技术识别	王亚东	程基础者报考
42、智能信息处理、信息推荐	张金柱	
43、科技大数据分析、领域知识挖掘 44、自然语言处理、文本挖掘	陈果	
45、双碳治理与安全管理工程 46、绿色创新与社会责任	芦慧	
47、物流与供应链管理 48、运营管理与会计/金融交叉领域	石绣天	
49、金融工程		
50、资产定价 51、创新与知识产权管理 50、资产发展 50 年 50	展湧	培养单位:知识产权学院
52、数智驱动的交通运输管理 53、数字创新与知识产权政策	—————————————————————————————————————	 培养单位:知识产权学院
54、开源创新治理 55、系统可靠性		数学、工业工程、计算机等相关
56、运维智能决策	沈静远	背景优先
57、数智决策与博弈优化 58、系统工程与供应链管理	于晶	
—21—	······································	·

(108) 能源与动力工程学院

学科、专业名称及研究方向	指导教师	备 注
0801 力学(一级学科学位授予权)	1	
01、湍流过程及其控制	151 Au	
02、弹箭空气动力学	周毅	
03、智能流体力学 04、多体系统动力学新方法与软件开发		
05、发射动力学仿真与测试	何斌	
06、 机械系统振动与噪声控制		
07、多体系统动力学与控制	D. 7⊟	
08、含能材料制造工艺动力学	戎保	
09、机械系统动力学设计优化与软件开发		
10、机械系统振动与噪声控制	シボ #	
11、力学/声学超材料(如声学黑洞等)	张燕妮	
12、机械系统声隐身、声探测		
13、弹箭气动布局设计	日续舰	
14、跨介质弹药技术	, , , , , , , ,	
15、实验流体力学		
16、高速水动力学仿真与测试	7-11 777 - 11:	
17、水下航行体运动减阻与控制技术	胡常莉	
18、空化流动及其应用 19、智能复合材料		12 26 26 12
■ 19、 省配复古材料 ■ 20、 复合材料结构力学	· · · · · · · · · · · · · · · · · · ·	培养单位:
21、柔性空间可展开结构设计及展收动力学特性研究	大成成	物理学院
22、多体系统发射动力学		
23、多领域耦合系统动力学	王国平	
24、机械系统动力学与振动控制		
25、粘弹性材料的接触力学、黏附与摩擦研究	Carbone	培养单位:
26、粘弹性材料的缺陷与裂纹扩展研究		物理学院
27、用于调控黏附与滑动摩擦的仿生表面微结构研究	Giuseppe	1322 7 150
28、刚柔耦合多体系统动力学		培养单位:
29、柔性机器人碰撞动力学	章定国	物理学院
30、多体动力学在发射系统中的应用	7,00	1337 1 3 130
31、复杂机械与结构动力学理论及应用		 15 4 4 12
32、多体系统动力学与控制	黎亮	培养单位:
33、复合智柔体系统多物理场耦合非线性动力学 34、燃烧和爆轰理论与技术		物理学院
35、 弹箭推进增程理论与技术	董刚	培养单位:
		重点实验室
0807 动力工程及工程热物理(一级学科学位授予权)	γ	
■ 01、传热传质与强化		
┃02、电子设备热控制方法与技术 ┃03、新能源高效利用	李强	
■ 06、新配源高效利用 ■ 04、太阳能与化石能源互补耦合利用方法与技术		
05、锂电池热失控与安全技术		
06、钠离子电池技术	w	
07、固态电池技术	王文举	
08、水系锌离子电磁技术		
09、红外辐射特性仿真与分析		
10、热辐射控制与红外隐身	韩玉阁	
11、新能源高效利用	TH 141	
12、传热传质与强化		
13、先进燃烧诊断与污染控制技术		
14、能源利用过程中的人工智能与机器学习	刘冬	
15、航空发动机/火箭发动机燃烧诊断技术		
16、低碳能源利用技术		<u> </u>

学科、专业名称及研究方向	指导教师	备	注
17、传热传质与强化 18、新能源高效转化与利用 19、系统综合热管理方法与技术 20、目标红外辐射特性分析与控制 21、热物理量测方法与技术 22、太阳能和化石能源互补耦合利用方法与技术	宣益民		
23、相变传热传质与强化 24、功能表界面物质高效输运 25、3D 堆叠芯片冷却技术	陈雪梅		
26、电子设备冷却技术 27、航天器热控制 28、先进热管理材料与器件	范德松		
29、传热传质 30、太阳能高效利用 31、二氧化碳资源化利用	刘东		
32、新能源高效利用 33、二氧化碳资源化利用 34、先进能源技术与材料 35、电解池/水系电池/燃料电池	段静静		
36、多相流强化传热 37、多物理场流固耦合 38、非平衡界面热质传递	郑林		
39、新型电极材料开发及其动力学、热力学研究 40、全固态电池及其界面工程 41、金属负极界面保护及宽温域电解液技术 42、电化学储能工程器件及应用	陈明哲		
43、新能源高效转化与利用 44、复杂流场作用下能源装备动力学研究及其智能诊断、控制与预测技术 45、功率器件热管理与智能控制	邱颖宁		
46、两相流与沸腾传热 47、芯片/电子器件封装及热管理 48、增/减材制造与界面科学 49、MEMS 传感器/芯片设计、加工及仿真模拟	李佳琦		
50、目标与环境红外辐射特性建模与控制 51、基于物理原理的复杂动态场景红外仿真 52、传热传质与强化 53、面向热物理的强化与迁移学习	任登凤		
54、环境智能感知与高效节能 55、室内环境人因工程 56、建成环境热污排放与协同控制	关军		
57、化学链及光热催化技术 58、固体废弃物高值化技术 59、功能材料的高通量筛选与设计	许婷婷		
60、高功率电子设备热管理 61、高效传热传质 62、高效气液与固液相变传热 63、电芯片与光芯片集成封装热管理	胡定华		
64、燃烧稳定性在线监测及工程应用 65、基于 AI 算法的温度场在线监测技术 66、基于机器视觉的燃烧诊断及工程应用	闫伟杰		
67、低碳能源(生物质、有机固废等)高值化利用技术 68、废弃新能源器件热化学回收技术 69、典型热力系统低碳化改造及过程优化	张书平		
70、多相反应流传热传质 71、二氧化碳清洁转化 72、太阳能高效利用与储存 73、微尺度传输与微反应器	冯浩		
74、温室气体捕集与资源化利用 75、低/零碳燃料绿色合成与清洁燃烧 76、固废资源化利用	吴烨		

学科、专业名称及研究方向	指导教师	备 注
77、固体氧化物燃料电池发电		
78、高温电解水制"绿氢"	周娟	
79、二氧化碳电化学还原制碳氢燃料 80、火焰合成功能性纳米材料及涂层		
81、复杂燃烧体系光学诊断	刘冠楠	
82、金属储能	いり回川田	
83、新型能源材料与电化学器件		
84、长寿命宽温域储能电池	周丽敏	
85、固态电池及其界面工程) FI 1111 45X	
86、高比能电极材料开发 87、光伏装备一体化 AI 建模		
88、太阳能光伏光热综合利用	罗成龙	
89、太阳能建筑) /4//2	
90、爆轰推进技术		
91、爆轰理论及应用	白桥栋	
92、先进空天动力技术		
93、爆轰发动机技术 94、大功率声源技术	黄孝龙	
95、发动机超声速射流声波的形成机理及控制方法	男子儿	
96、多相流理论与数值模拟	/A >= +t-	
97、多孔介质燃烧技术	徐江荣*	
0826 兵器科学与技术(一级学科学位授予权)		
01、发射动力学控制理论与技术		
02、武器系统动力学性能设计理论与技术	芮筱亭	
03、武器试验动力学评估技术		
04、现代发射理论与控制技术	-1. I -	
05、弹道过程模拟仿真与优化	张小兵	
06、多物理场耦合与优化技术		
07、复杂飞行动力学建模与优化 08、多信息源组合导航与协同定位	 孙瑞胜	
09、先进飞行器控制与制导	リング・ハリカエ	
10、武器系统磁流变减振系统设计		
11、武器系统动力学建模与控制技术	朱炜	
12、武器系统振动测试与控制技术		
13、发射动力学理论与测试技术 14、武器系统动力学试验技术	 杨富锋	
15、武器系统多领域动力学与控制技术		
16、发射动力学		
17、武器系统振动控制	于海龙	
18、组合导航与多源信息融合		
19、多目标智能检测与识别跟踪	白宏阳	
20、集群智能定位感知与末制导		
21、智能弹道理论与技术 22、飞行器动力学、制导与控制	그 무미 언니	
23、 单箭总体设计与多学科优化	王旭刚	
24、多刚柔体系统动力学		
25、多元多态系统建模仿真	 	
26、大型工业软件高速高稳定性求解器		
27、弹药安全性评估理论与技术	一十世:	
28、弹药安全性动力学设计技术	王燕	
29、内弹道过程模拟仿真与优化技术		
30、热/流/固多物理场耦合理论与仿真	薛涛	
31、高精度数值计算新方法		
32、智能弹箭发射与推进技术	4H). D	
33、智能流体动力学与控制	程诚	
34、发射工程智能计算力学		
35、现代发射理论与技术 36、特种发射技术	井 角	
■ 30、特性反射技术 ■ 37、热声系统非线性动力学与控制	黄勇	
UN 本产水别中以上约万十分工则		L

学科、专业名称及研究方向	指导教师	备	注
38、智能弹药发射技术 39、无人装备发射与控制技术	王加刚		
40、现代发射理论与技术 41、飞行器分离抛撒技术	江坤		

(110) 自动化学院

学科、专业名称及研究方向	指导教师	备注
0811 控制科学与工程(一级学科学位授予权)		
01、鲁棒控制与滤波 02、非线性控制	徐胜元	
03、视频图像处理		
04、兵器火控理论与技术	薄煜明	
05、常规弹药制导研究	海应 奶	
06、组合导航理论与技术 07、切换系统		
08、非线性控制	 	
09、鲁棒控制	川岬崃	
10、智能控制		
11、指挥自幼化连化与辅助状象 12、智能信息综合处理		
13、虚拟环境建模	王建宇	
14、微电网调度与控制		
15、智能电网应急管理与控制 16、网络化协同目标探测、定位与跟踪		
17、事件触发估计理论及应用		
18、扩展目标跟踪	李银伢	
19、水下目标运动分析		
20、网络控制系统理论及其应用		
21、机器学习与大数据分析 22、物联网工程技术	张捷	
23、智能控制理论方法与应用		
24、新能源发电系统的设计、控制与接入		
25、电力电子在电力系统中的应用	李磊	
26、智能电网中的控制技术 27、目标跟踪理论与技术		
28、非线性滤波理论与应用		
29、智能火控理论与应用 30、组合导航理论与技术	吴盘龙	
30、组合导航程化与技术 31、协同制导控制技术		
32、时滞系统鲁棒控制理论		
33、非线性系统分析与控制	张保勇	
34、复杂网络分析及其控制方法 35、基于混杂系统设计的状态观测与轨迹跟踪控制(网络视觉、无模型控制)		
36、人机共融系统机理分析建模与智能控制(智能交通、飞控、外骨骼)		
37、可再生能源(生物厌氧、风电)的建模与优化控制	王浩平	
■ 38、汽车减振及内燃发动机节能、减排控制技术 ■ 39、人机共融系统路径规划与智能控制(智能交通、飞控、外骨骼)		
40、智能控制与智能系统		
41、智能机器人系统	郭健	
42、电机驱动与控制		
43、交通信息工程及控制技术 44、交通安全的控制理论及方法		
■ 44、父迪安宝的控制理论及方法 ■ 45、交通运输规划与管理方法	I =	
46、车辆排放的监测技术	胡启洲	
47、高速铁路安全运营的监控理论		
48、交通拥堵及应急管控方法		
49、系统/体系建模仿真、效能评估及体系贡献率分析 50、体系筹划与规划、辅助决策技术		
■ 51、数据链/杀伤网体系能力评估技术	黄炎焱	
52、有/无人系统协同指挥与控制		
53、应急管理与控制技术		<u> </u>

学科、专业名称及研究方向	指导教师	备注
54、奇异摄动系统,系统分频鲁棒分析与控制		
55、无人飞行器设计、控制与导航	蔡晨晓	
56、大数据信息平台设计与管理		
57、随机非线性系统分析与设计 58、多智能体	」 马立丰	
59、传感器网络	J 1	
60、时滞系统鲁棒控制		
61、多智能体系统分布式协调控制	马倩	
62、非线性系统分析与设计		
63、网络化系统建模与控制 64、无线通信网络协议理论与方法	 杨力	
65、指控网络系统理论与技术	1/21/1	
66、风力发电系统控制		
67、大规模风电友好并网	殷明慧	
68、电力系统运行与控制		
69、惯性导航技术与全球卫星定位系统(GPS 和北斗等)		
70、组合导航理论与技术	陈帅	
71、智能导航理论与技术 72、名机器 A 系统		
72、多机器人系统 73、多智能体系统	 宋程	
74、分布式协同控制	八生	
75、多智能体系统	+: <i>k+</i> : pp	
76、分布式优化	袁德明	
77、不确定性量化		
78、概率预测	权浩	
79、可再生能源集成	1210	
80、人工智能在电力系统中的应用 81、分布式优化与控制		
82、博弈及其应用	叶茂娇	
83、智能网络与控制系统		
84、指挥控制网络	潘成胜*	
85、电驱系统故障预测与健康管理		
86、智能驱动与控制技术	李文龙	
87、电能高效转换与智能调控	Anlle dans	
88、电力电子系统的拓扑理论、特性建模、运行控制	姚凯	
89、控制系统数据安全	冯帅	
90、机器人控制、智能系统、高精度伺服系统	李胜	
91、新型配电系统控制及仿真	柳伟	
92、兵器火力智能控制及效能评估	11471	
93、满意待机控制与估计	王军	
94、智能制造控制与应用集成		
95、电能变换优化与控制	曾志勇	
96、并网型变流器、电动汽车驱动和脉冲电源优化控制	百心	
97、电力系统应急控制	\&! · ·	
98、电网友好型新能源发电控制	谢云云	
99、极端条件下智能电网运行控制 100、网络通信模式识别		
100、网络迪信侯式识别 101、人工智能安全	刘伟伟	
102、导航、制导与控制		
105, 0 Mt, ika 0 — 1T-ika	徐祥	
103、控制理论与控制工程		
104、智能控制	 吴益飞	
105、智能机器人)	
106、高精度伺服系统	<u> </u>	

学科、专业名称及研究方向	指导教师	备	注
107、非线性系统 108、多智能体系统	邹文成		
109、复杂能源系统规划 110、运行与控制	罗李子		
111、全生命周期储能电池系统智能管理与优化运维	孙金磊		
112、正系统分析与综合 113、网络安全控制 114、复杂系统动力学分析	张益军		
115、高性能电机驱动控制 116、伺服运动控制 117、机器人运动控制系统	孙乐		
118、自主无人系统智能自适应协同控制 119、复杂环境下不确定非线性系统智能控制 120、网络化系统的高性能量化控制	刘文慧		

(113) 物理学院

学科、专业名称及研究方向	指导教师	备 注
0702 物理学(一级学科学位授予权)		
01、半导体材料与器件 02、半导体材料模拟	阚二军	
03、超快光物理 04、强场原子分子物理 05、凝聚态物性及应用	陆瑞锋	
06、颗粒材料物理 07、软物质物理 08、非线性声学	黄德财	
09、半导体材料结构与 X 射线光谱学 10、晶体材料光物理与 X 射线光谱学 11、分子光化学与超快 X 射线光谱学	花伟杰	
12、 软物质物理 13、 软物质的理论计算与模拟	苏加叶	
14、凝聚态物理 15、固体电子学 16、光电子学	程斌	
17、原子核物理 18、理论物理	钱以斌	
19、凝聚态理论 20、半导体器件	翟学超	
21、计算材料学 22、电化学储能 23、计算催化	湛诚	
24、超快光物理 25、凝聚态物理	赵琨	
26、高能核物理理论 27、相对论重离子对撞和夸克-胶子等离子体 28、QCD 相结构	何敏	
29、半导体材料计算与模拟 30、半导体自旋电子学	黄呈熙	
31、半导体材料合成 32、半导体太阳能转化材料 33、半导体光催化	李盎	
34、有机光电子材料与器件 35、手性自组装化学与物理 36、类脑智能计算	杨东	
37、光与凝聚态物质相互作用 38、半导体光电材料与器件 39、超快动力学方法与理论	孙久雨	
40、低维材料的磁性、铁电 41、拓扑量子材料 42、材料的量子输运	杜永平	
43、强激光与物质相互作用 44、超快光物理	余超	
45、超快光物理 46、超快激光微纳加工技术与应用	于洋	
47、凝聚态物理实验 48、二维半导体可控合成 49、新型量子与光电器件研发	万逸	
50、超快激光与物质相互作用	金成	
51、高压物理 52、凝聚态物理	李印威*	

学科、专业名称及研究方向	指导教师	备 注
0803 光学工程(一级学科学位授予权)		
01、激光雷达及其目标识别定位技术 02、激光探测理论与三维层析技术 03、光电检测技术及仪器	李振华	
04、激光的力的、热的效应及物理机制 05、激光对光电池的辐射效应和应用 06、激光与液滴相互作用研究	陆健	
07、光声光热无损检测技术及应用 08、激光与材料相互作用及应用研究	沈中华	
09、激光成像理论与技术	来建成	
10、光子晶体、表面等离激元、超材料设计与应用 11、微纳光纤传感与检测技术	蒋立勇	
12、低维材料的光谱学与非线性光学 13、基于低维材料的新原理全光与光电器件 14、光学/光电智能计算及类脑视觉	于文韬	

(116) 材料科学与工程学院

学科、专业名称及研究方向	指导教师	备注
0805 材料科学与工程(一级学科学位授予权)		
01、凝固技术与新材料		
02、航空发动机等运载动力材料技术	The Ale	
03、陆海空天军工材料技术	陈光	
04、先进材料增材制造(3D 打印)技术		
05、先进焊接方法与异种材料焊接		
06、加工工程智能化与数字化	王克鸿	
07、金属高性能增材制造		
08、半导体发光理论及器件模拟		
09、半导体发光量子点合成调控 10、半导体量子点发光显示器件	曾海波	
10、半导体量子点发光显示器件	11400	
11、二维P型半导体及晶体管器件		
12、材料的表面工程 13、材料的晶界工程		
14、材料的激光加工与增材制造	杨森	
15、生物材料及其表面改性		
16、磁相变合金及其磁制冷效应		
17、巨磁致伸缩材料		
18、磁性反常热膨胀合金及零热膨胀效应		
19、磁电子材料计算和设计、二维材料及磁斯格明子新材料探索	徐锋	
20、稀土永磁材料		
21、微波吸波材料		
22、薄膜磁各向异性及自旋动力学		
23、氧化物半导体材料及器件	+ = -	
24、柔性氧化物电子材料及器件	袁国亮	
25、压电陶瓷及精密致动器件		
26、微成形技术	张新平	
27、轻金属塑性成形技术 28、高熵合金的力性和变形机理		
29、纳米金属的力性和变形机理		
30、高熵合金的工业化应用	赵永好	
31、纳米金属的工业化应用		
32、半导体纳米晶及光电器件		
33、光电探测材料与器件	邹友生	
34、环境友好型发光材料及器件		
35、超高性能水泥基复合材料		
36、3D 打印建筑和低碳建筑材料	赖建中	
37、抗冲击爆炸防护工程材料		
38、高温金属材料		
39、材料基因组工程	李永胜	
40、材料模拟与计算		
41、全固态薄膜微电池关键材料及器件		
42、锂/钠离子电池关键材料及器件	夏晖	
43、水系电池、超级电容器关键材料及器件		
44、新型二次电池关键技术及材料		上海国上与北角层
45、纳米结构金属玻璃材料及其应用	加油	与德国卡尔斯鲁厄
46、纳米材料的界面科学与界面工程 47、纳米材料原子结构与性能	冯涛	理工学院联合培养
48、功能自组装结构及其应用		
49、功能复合多孔材料及其应用	吉庆敏	
50、增材金属学		
50、增权金属子 51、增材合金设计与制备		
52、非晶纳米晶与高熵合金	孔见	
53、焊接材料与精密钎焊		
/ 112 T11 1 2 TR EL VI / 1	L	1

学科、专业名称及研究方向	指导教师	备 注
54、纳米多孔金属		
55、非晶合金	秦凤香	
56、金属腐蚀与防护		
57、仿生及生物态材料		
58、结构功能一体化复合材料	王天驰	
59、高性能隔热材料		
60、仿生结构材料表面		
61、高性能一体化设计和增材制造 62、异种和高性能材料焊接	周琦	
63、高能束流加工	/11/11	
64、半导体热电转换材料与器件		
65、新型热电化合物设计与合成	唐国栋	
66、金属纳米功能材料		
67、铁电生物电子学		
68、磁电材料与传感器	汪尧进	
69、压电材料与器件物理		
70、低维半导体材料的制备和光电表征		
71、超快激光光谱	王跃	
72、微纳光电器件与物理(微纳激光、谐振腔、光波导等)		
73、半导体光学和激子学		
74、二维功能材料 75、先进钙钛矿光电材料	张胜利	
76、新能源与新光电器件	加土不可	
77、量子点激发态合成调控		
78、高能辐射探测材料与器件	李晓明	
79、新型能源转换材料与器件		
80、先进焊接方法	,	
81、电弧增材制造	冯曰海	
82、加工过程传感与智能控制 83、非晶合金		
84、高熵合金	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
85、纳米合金	兰司	
86、同步辐射与中子散射		
87、表面增材制造和微纳加工		
88、极端工况材料表面防护及摩擦学	陈翔 90	
┃89、高强韧超耐磨合金设计 ┃90、球差矫正透射电子显微学		
91、固体氧化物燃料电池与电解池		
92、固态离子学	丁锡锋	
93、金属空气电池关键材料与器件	1 120 14	
94、光电化学能源转换材料与器件		
95、半导体薄膜电极制备及化学改性	张侃	
96、纳米结构及表面功能化设计		
97、二维半导体集成电子学器件		
98、二维半导体柔性电子学器件	7 /- ¥11 0 4	
99、二维半导体生物电子学器件 100、高迁移率二维 P 型半导体材料	陈翔 84	
100、高足移举二维产至十等体材料 101、晶圆级二维半导体可控合成		
102、二次电池材料与器件		
103、固态/准固态电池	太古州	
104、纳米能源材料	李高然	
105、表界面电化学		
106、晶态多孔材料及薄膜		
┃107、无机-有机杂化材料及涂层设计 ┃108、吸波材料与隐身设计	本住人	
108、吸波材料与隐身设计 109、光子晶体与显色/发光	李伟金	
110、介电调控与介电储能/传感器件		
111、纳米异构材料设计及加工		
112、材料组织调控及强韧化	李玉胜	
113、高性能金属材料		

学科、专业名称及研究方向	指导教师	备注
114、能源材料与电化学		
115、水系电池、超级电容器关键材料与器件 116、下一代二次电池技术及其关键材料	翟腾	
■ 116、下一代—次电池技术及兵天堤材料 ■ 117、高性能铝合金凝固组织调控与力学性能		
118、铝基复合材料制备与强韧化	聂金凤	
119、金属熔体多相反应设计与调控		
120、先进焊接方法 121、金属高效增材制造		
122、加工过程传感与智能控制	<i>シ</i> 另	
123、低维材料电子结构		
124、低维材料光电器件	陈哲生	
125、吸波材料 126、高性能复杂构件精密铸造成形		
127、凝固技术与新材料	文 德日	
128、航空发动机等运载动力材料技术	陈旸	
129、陆海空天军工材料技术	PALMA	
130、先进材料增材制造(3D 打印)技术 131、材料加工		
132、焊接	李晓鹏	
133、增材制造	子吃加	
134、微纳加工 135、金属材料设计与力学行为		
136、电弧焊接工艺	9年1八19	
137、新材料的连接技术	张德库	
138、电弧及注入式增材工艺		
139、压电陶瓷与器件	张骥	
140、介电储能陶瓷与薄膜 141、非晶/高熵合金的制备与功能化		
142、二次电池电极材料的结构调控	朱 贺	
143、电催化剂设计与原子结构调控		
144、非晶合金制备及其催化特性研究		
145、高熵合金制备及其功能特性研究	陈双琴	
146、纳米非晶制备及其性能研究		
147、凝固技术与新材料 148、材料先进表征	郑功	
149、微纳加工技术	VEAN	
150、零/负热膨胀合金		
151、新型磁-热转换材料	缪雪飞	
152、磁性合金的功能结构一体化设计与制备		
┃153、先进焊接方法与异种材料焊接 ┃154、金属高性能增材制造	刘捷	
155、加工过程智能化	XIIÆ	
156、纳米金属强韧化		
157、高温合金成分设计及组织性能优化	张勇	
158、金属增材制造 159、界面限域催化中的量子效应与反应路径调控		
160、非平衡态下的动态自组装与信息功能化表面构建	孔惠慧	
161、纳米异构材料	Steat 2	
162、镁合金界面结构设计及表征 163、跨尺度原位电子显微学	肖礼容	
164、材料服役行为与工程化	t t	
165、基于人工智能的材料设计	相恒高	
166、纳米、异构亚稳金属材料	H-1-H-	
┃ 167、3D 微纳增材 ┃ 168、PVD 高熵材料	卢叶茂	
169、自旋电子学器件物理		
170、磁性功能材料	陈喜	
171、低维材料与器件		
172、拓扑量子材料 173、非线性光学晶体材料	李志	
174、材料理论与计算	, ,,,,	

学科、专业名称及研究方向	指导教师	备 注
175、凝固技术与新材料 176、航空发动机等运载动力材料技术 177、陆海空天军工材料技术 178、先进材料增材制造(3D 打印)技术	祁志祥	
179、发光量子点的合成与调控 180、激光材料改性与微加工 181、MicroLED 微显示技术	陈军	
182、无铅压电薄膜的溶胶凝胶制备与性能研究 183、高温压电陶瓷材料及传感器应用研究	刘丽莎	

(121) 瞬态物理全国重点实验室

学科、专业名称及研究方向	指导教师	备注
0826 兵器科学与技术(一级学科学位授予权)	·	
01、电磁发射技术 02、脉冲功率源技术 03、多物理场瞬态测试技术 04、瞬态多物理场耦合建模仿真 05、超高速弹道技术 06、新概念发射技术 07、制导弹箭弹道规划与控制 08、基于深度强化学习的无人飞行器集群协同与通信	栗保明	
09、高速弹箭推进增程技术 10、连续旋转爆轰发动机技术 11、大功率脉冲声源及声波传播技术	翁春生	
12、飞行器制导与控制技术 13、超空泡减阻控制理论与技术 14、新型弹箭的弹道理论与技术	易文俊	
15、弹药与战斗部技术 16、智能毁伤与感知防护 17、毁伤评估理论与技术 18、终点弹道学	王金相	
19、流固耦合及其减阻减振理论与技术 20、水中弹道理论与技术 21、噪声及其控制技术	张辉	
22、大功率声源技术 23、水下高速航行器动力技术 24、燃烧场光学诊断技术	李宁	
25、水中弹道理论与技术 26、跨介质与水中弹药技术 27、水中高速发射技术 28、超声速多相流体力学	郭则庆	
29、水中弾道 30、跨介质流体动力学 31、发射动力学 32、水下无人潜航器总体技术 33、水下发射技术 34、水下固体火箭推进技术	赵子杰	
35、智能控制技术 36、智能发射技术	窦磊	
37、高超声速弹用动力技术 38、空间固体推进技术 39、固体粉末爆轰发动机技术 40、能源高效转化与应用技术 41、气固两相流动及爆轰动力学	续晗	
42、跨介质出入水弹道理论与技术 43、高速出入水流固耦合理论与技术 44、极地环境下高速破冰出入水技术 45、跨介质航行器降载增稳设计方法 46、基于人工智能的高速出入水流场、弹道预测方法	黄振贵	
47、高速弹箭推进增程技术 48、空天爆轰组合推进技术 49、发动机内流流体力学与燃烧学	武郁文	
50、高效毁伤理论与技术 51、跨介质运动理论与技术	孙宇新	
52、计算爆炸力学 53、超声速流动与控制技术 54、水中弹道理论与技术 55、跨介质多相流动力学	张焕好	

学科、专业名称及研究方向	指导教师	备 注
56、爆炸毁伤与工程防护 57、毁伤评估理论与技术 58、终点弹道学 59、爆炸加工	杨明	
60、非理想爆轰传播机理61、高精度数值仿真方法62、旋转爆轰推进技术63、斜爆轰推进技术	王放	

(123) 马克思主义学院

学科、专业名称及研究方向	指导教师	备 注
030500 马克思主义理论(一级学科学位授予权)	<u>.</u>	
01、马克思主义经典著作与原理 02、国家与政党治理	李红亮	
03、国防教育理论与方法 04、军事社会学	顾辉	培养单位: 公共事务学院
05、自然辩证法前沿问题 06、人工智能时代的马克思学	刘海龙	
07、习近平文化思想 08、马克思主义意识形态理论	梅景辉*	
09、中国化马克思主义 10、生态文明与生态德育	朱国芬	
11、马克思主义与当代中国社会发展 12、思想政治教育理论与实践	梁德友	
13、中国特色的政治与治理 14、思想政治教育理论与实践	章荣君	培养单位: 公共事务学院
15、思想政治教育理论与实践 16、传统文化与政治发展	徐志国	培养单位: 公共事务学院
17、数字公共治理 18、基层治理	范炜烽	培养单位: 公共事务学院
19、中国政府与政治 20、中国特色社会主义理论与实践	程倩	培养单位: 公共事务学院
21、中国政府与政治 22、中国特色社会主义理论与实践	王金水*	
23、毛泽东哲学思想 24、马克思主义与当代中国	韩步江	
25、中共党史与党的建设 26、马克思主义中国化与习近平治国理政思想	郭凯*	
27、思想政治教育前研问题研究 28、思想政治教育与社会发展	王永益	
29、思想政治教育心理学 30、责任心理与教育	况志华	培养单位: 公共事务学院
31、思想政治教育原理与方法 32、网络思想政治教育	邓纯余	
33、思想政治教育理论与实践 34、网络意识形态传播	刘伟*	
35、思想政治教育新介质新路经研究 36、中华优秀传统文化创新性发展创造性转化研究	张新科*	
37、思想政治教育前沿问题研究 38、思想政治教育数字化研究	卢岚*	
39、人民军工史 40、中华人民共和国高等教育史	陈钊	
41、思想政治工作史 42、新中国工业化史	季卫兵	
43、国防教育管理与实践 44、国防教育与国防法治	董新凯	培养单位: 知识产权学院
45、国防文化与国家安全教育 46、国防动员理论与实践	曲绍旭	培养单位: 公共事务学院
47、国防教育管理与实践 48、国防教育与国防法治	郑伦幸	培养单位: 知识产权学院

学科、专业名称及研究方向	指导教师	备 注
49、国防教育理论与方法 50、国防教育管理与实践	高蓓蕾	培养单位: 公共事务学院
51、国防文化与国家安全教育 52、军事政治学	黄博	培养单位: 公共事务学院
53、国防文化与国家安全教育 54、军事社会学	谈际尊	培养单位: 公共事务学院
55、国防教育管理与实践 56、国防动员理论与实践	杜人淮*	培养单位: 公共事务学院
57、国防教育理论与方法 58、军事社会学	王昌国*	培养单位: 公共事务学院
59、国防教育理论与方法 60、军事社会学	吴爱军*	培养单位: 公共事务学院
61、习近平生态文明思想 62、马克思主义与当代中国	肖兰兰	
63、中国共产党革命根据地史 64、新中国工业史 65、中国乡村治理史	陈明胜	
66、马克思主义中国化与"三农"问题 67、中国式现代化与中华民族共同体建设 68、党建与基层治理	王家斌	
69、党的领导体制与国家治理 70、国企党建与国企改革	强舸	
71、马克思主义与当代治理 72、思想政治教育理论与实践	王延隆*	

(127) 网络空间安全学院

学科、专业名称及研究方向	指导教师	备 注
0839 网络空间安全(一级学科学位授予权)		
01、物联网安全	任奎*	
02、人工智能安全 03、物联网与移动计算]	
06、初联网与移动计算 04、群智感知与工业互联网	刘云淮*	
05、密码理论与隐私保护		
06、同态加密技术	许春根	
07、抗量子计算密码 08、加密流量分析		
06、加密机量分析 09、自然语言处理		
10、信息内容安全	张鹏	
11、网络流量分析		
12、密码理论与技术		
13、智能硬件安全与人工智能安全 14、物联网安全与网络系统安全	周永彬	
15、数据安全与隐私保护		
16、人工智能算法安全		
17、多模态数据伪造与鉴伪	练智超	
18、网络威胁行为分析与入侵检测		
19、基于毫米波/太赫兹成像的智能安检技术		
20、人工智能应用及其安全 21、数据安全与隐私保护	逢淑超	
22、区块链与大模型安全	(生物)()	
23、区块链安全与监管		
24、数据安全与隐私保护	祝烈煌*	
25、人工智能安全		
26、漏洞挖掘		
27、大语言模型安全 28、边缘智能安全和软件安全	徐雷	
29、大数据隐私保护与挖掘技术		
30、智能信息处理		
31、人机交互与大数据分析	天鹏	
32、软件侧信道分析		
33、后量子密码实现 34、人工智能+安全	高宜文	
35、量子纠错编码与译码算法		
36、量子信息与量子网络	樊继豪	
37、量子神经网络与机器学习		
38、数据安全与隐私保护	田山映	
39、人工智能安全	周由胜	
41、数据安全与隐私保护		
42、人工智能安全	王滨*	
43、软件与系统安全		
44、密码学 45、网络安全		
46、大数据安全	翁健*	
47、人工智能安全		
48、密码学	~	
49、硬件安全	Sylvain	
50、后量子密码安全 51、形式化安全设计方法	Guilley*	

(130) 数学与统计学院

学科、专业名称及研究方向	指导教师	备 注
0701 数学(一级学科学位授予权)		
01、不确定性理论 02、智能优化	朱元国	
03、流形上的几何分析	赵培标	
04、投资组合管理与无套利分析 05、动力系统与生物数学	邱志鹏	
06、微分方程及应用 07、算子谱理论与反问题	杨传富	
08、复分析 09、拟共形映射与 Teichmuller 空间	范金华	
10、随机偏微分方程 11、多尺度建模与机器学习	吕艳	
12、图像处理中的数学反问题模型与算法 13、人工智能学习模型与算法	张军	
14、动力系统与 KAM 理论	王婧	
15、微分几何 16、几何分析 17、复几何	张希	
18、偏微分方程及其应用 19、基于数学方法的图像处理	刘海蓉	
20、分数阶微积分与分形几何	梁永顺	
21、偏微分方程及其在图像处理中的应用 22、应用偏微分方程	刘芳	
23、几何分析 24、微分几何	刘佳伟	
25、微分方程与动力系统	周盾	
26、可积系统及其应用 27、机器学习及其应用	安红利	
28、几何处理 29、结构设计优化 30、微分方程及其应用 31、计算机图形学与视觉	王伟明	
32、微分几何 33、几何分析 34、复几何	李超	
35、图论及其应用 36、极值图论 37、代数图论	翟明清	
38、几何泛函不等式 39、极值函数问题 40、非线性泛函分析	朱茂春	

(132) 微电子学院(集成电路学院)

学科、专业名称及研究方向	指导教师	备 注
0809 电子科学与技术(一级学科学位授予权)	I	
01、计算电磁学 02、射频集成电路设计 03、阵列天线 04、目标电磁特性与智能识别	丁大志	
05、目标电磁散射特性 06、瞬态电磁场及电磁防护 07、计算电磁学 08、微波电路与天线	樊振宏	
09、电磁场与微波技术 10、新一代射频与微波电路 11、天线与相控阵技术	李兆龙	
12、超构表面器件与应用 13、微纳光电子器件与应用	俞叶峰	
14、计算电磁学 15、阵列天线与电磁超表面 16、电磁散射与目标特性 17、射频电路与微系统	李猛猛	
18、微纳电子器件 19、电磁超表面 20、光子集成	顾文华	
21、半导体器件仿真与性能优化 22、物理电子系统与技术	曾晖	
23、计算电磁学及工程应用 24、目标特性及智能目标识别 25、SAR 体制下月球电磁探测及参数反演	何姿	
26、射频集成电路设计与 EDA 27、先进封装与芯粒集成 28、集成电路多物理场建模与可靠性评估	包华广	
29、微纳电子学 30、微电子与固体电子学 31、集成电路设计与 EDA 技术 32、功率集成电路设计	孙大鹰	
33、计算电磁学 34、特征模理论、算法及其应用 35、智能电磁学(AI Electromagnetics) 36、量子计算及其应用	王朝甫	
37、微波光谱与仪器 38、微波量子时钟电路	孙铭	
39、集成电路设计 40、先进封装与系统集成 41、半导体新器件与可靠性	于宗光*	
42、有源相控阵收发组件 43、三维异构集成电路设计	周骏*	
44、目标电磁特性 45、生命健康雷达 46、SAR 小目标检测与识别	张先超*	
47、毫米波与太赫兹集成电路 48、毫米波与太赫兹组件微系统集成 49、毫米波与太赫兹测试仪器与技术 50、毫米波与太赫兹无损检测与物质分析	邓建钦*	
51、半导体器件物理 52、大功率器件热管理 53、片上集成技术及应用	孔月婵*	
54、计算电磁学 55、目标特性与目标识别	殷红成*	

(133)安全科学与工程学院(应急管理学院)

学科、专业名称及研究方向	指导教师	备 注
0837 安全科学与工程(一级学科学位授予权)		1
01、智能感知与安全监测预警 02、原子/量子精密测量与无损检测 03、无线无源传感器标签技术	下雷祥	
04、智慧应急技术 05、工程结构健康监测技术 06、地下空间探测与灾病害识别技术 07、新型弹药高效毁伤与工程防护		
08、新型爆炸毁伤效应与工程防护	何勇	
09、高性能抗爆防护材料与韧性结构 10、地下岩石工程动力学效应	张国凯	
11、多频谱工程电磁伪装材料设计与应用 12、电磁安全防护材料与技术 13、多功能高分子复合材料与结构 14、水泥基电磁功能材料与结构 15、电磁超材料设计与制造	谢阿明	
16、燃爆致灾理论及应用 17、燃爆风险监测预警 18、主动安全防护技术	郭耸	
19、复合含能材料设计与安全应用技术 20、燃烧爆炸理论与应用技术 21、爆炸场测试与评估技术	韩志伟	
22、工程复合材料安全性与耐久性 23、工程结构灾变机理与安全评估	左晓宝	
24、绿色低碳能源安全技术及应用 25、云雾爆轰技术及应用 26、爆炸安全防护材料与技术	李斌	
27、可燃物着火及燃烧 28、新型灭火剂研发及应用 29、机器学习在火灾安全中的应用方法	谌瑞宇	
30、含能材料安全 31、可燃物燃烧机理及火灾动力学 32、热安全测试测量技术	姜林	
33、爆炸分散技术及应用 34、多相爆炸机理及其防治技术 35、工程安全防护技术 36、新能源安全技术	宋先钊	
37、物质热稳定性 38、化工过程安全	陈利平	
39、高效毁伤和防护技术 40、防灾减灾及防护工程 41、抗爆炸冲击防护新材料	邓树新	
42、事故性爆炸毁伤效应与主被动防护 43、抢修抢建及工程应急保障 44、基础设施韧性防灾与评估 45、燃烧爆炸基础理论与应用技术	顾琳琳	
46、结构抗爆与抗震 47、桥梁与隧道工程动力效应 48、工程安全智能评估 49、先进安全防护材料	张于晔	
50、爆炸冲击毁伤评估 51、关键基础设施韧性防护 52、隧道与地下工程灾害防控	胡杰	
53、含能材料改性制备及热安全性 54、高能燃烧剂燃烧速率调控与优化技术 55、高效阻燃抑爆技术	张丹	

学科、专业名称及研究方向	指导教师	备 注
56、抗爆用高韧性钛合金的组织和晶体取向设计研究 57、合金元素对钛合金强韧性的影响机理分析	赵子博*	
58、爆炸物处置与安全防护技术 59、危险化学品安全技术及应用 60、公共安全技术与装备	周向阳*	
62、高危化工工艺全流程危险性评价方法	陈思凝*	
63、危化品重大危险源风险评估方法 64、含能材料安全的结构和动力学机理研究		
65、中子散射技术及应用 66、高分子材料"配方-结构-性能"机理 67、同步辐射技术及应用	刘栋*	